Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries.
نویسندگان
چکیده
New neurons continue to be born in the ventricular zone (VZ) of the lateral ventricles in the brain of adult birds. On the basis of serial section reconstruction and electron microscopy, we determined that the VZ of the adult canary brain is composed of three main cell types (A, B, and E). Type A cells were never found in contact with the ventricle and had microtubule-rich processes typical of young migrating neurons. Type B cells were organized as a pseudostratified epithelium, all contacted the ventricle, and most had a characteristic single cilium. Type E cells, also in contact with ventricle, were ultrastructurally similar to the mammalian multiciliated ependymal cells. After six injections of [3H]-thymidine (1 every 12 hr), Types A and B cells were found labeled. Type E cells were never [3H]-thymidine labeled. One to two hours after a single injection of [3H]-thymidine, all labeled cells corresponded to Type B cells. At survivals of 5, 24, and 74 hr after [3H]-thymidine injection, the proportion of labeled Type B cells decreased and that of Type A cells increased, indicating that Type B cells were the primary precursors. Most [3H]-labeled nuclei at 1-2 hr after [3H]-thymidine injection were separated from the ventricular cavity, but most of the mitotic cells were adjacent to the ventricle. This observation and measurements of the distance between labeled nuclei and the ventricular surface at 1, 5, 7, and 11 hr after [3H]-thymidine injection indicate that Type B cell nuclei move toward the ventricle to divide. This work reveals the architecture of the VZ in an adult vertebrate brain, identifies the primary precursor of new neurons, and describes nuclear translocation of these precursors during the cell cycle.
منابع مشابه
Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors.
During mitotic division in the telencephalic proliferative ventricular zone (VZ), the nuclei of the neural precursors move basally away from the ventricular surface for DNA synthesis, and apically return to the surface for mitotic division; a process known as interkinetic migration or "to-and-fro" nuclear translocation. The cell, which remains attached to the ventricular surface, either continu...
متن کاملNeuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain.
The vocal control nucleus designated HVc (hyperstriatum ventrale, pars caudalis) of adult female canaries expands in response to systemic testosterone administration, which also induces the females to sing in a male-like manner. We became interested in the possibility of neurogenesis as a potential basis for this phenomenon. Intact adult female canaries were injected with [3H]thymidine over a 2...
متن کاملNeurogenesis in adult canary telencephalon is independent of gonadal hormone levels.
Neurons generated in adulthood are found throughout the canary telencephalon. We are interested in the factors that control the rate of proliferation of stem cells that give rise to these new neurons. The rate of incorporation of newly generated neurons into vocal-control regions varies seasonally. This difference could reflect a higher rate of neurogenesis, a lower rate of cell death, or an al...
متن کاملReaction of subventricular zone stem cells to the induction of experimental autoimmue encephalomyelitis in mouse
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. In the present study, we investigated the response of subventricular zone (SVZ) adult stem cells in the experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and also the differentiation fate of these stem cells. Methods: Mice were immunized with MOG peptide emulsified in complete Freund'...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 3 شماره
صفحات -
تاریخ انتشار 1998